Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 156
Filter
1.
Foods ; 13(8)2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38672880

ABSTRACT

Green leaf volatiles (GLVs) are important in giving grape a fresh and green aroma. But the changes in GLVs during the phenological development of grapevines are not well known. This study analyzed the GLVs and transcription levels of associated biosynthetic genes in six grape species from the Loess Plateau region at five stages of maturation. Thirteen GLVs were detected, showing unique patterns for each grape type at various growth phases. The primary components in six grapes were (E)-2-hexenal, (E)-2-hexen-1-ol, and hexanal. With the exception of Cabernet Franc in 2019, the overall GLV contents of the six types generally increased during growth and development, peaking or stabilizing at harvest. And Sauvignon Blanc, Cabernet Gernischt, and Cabernet Sauvignon exhibited higher total contents among the varieties. PLS-DA analysis revealed 3-hexenal's high VIP scores across two years, underscoring its critical role in grape variety classification. Correlation analysis revealed a strong positive correlation between the levels of hexanal, 1-hexanol, (E)-2-hexen-1-ol, (Z)-3-hexenyl acetate, nonanal, and (E, E)-2,6-nonadienal and the expression of VvHPL and VvAAT genes in the LOX-HPL pathway. Specifically, VvHPL emerges as a potential candidate gene responsible for species-specific differences in GLV compounds. Comprehending the changing patterns in the biosynthesis and accumulation of GLVs offers viticulturists and enologists the opportunity to devise targeted strategies for improving the aromatic profile of grapes and wines.

2.
Food Res Int ; 181: 114120, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38448101

ABSTRACT

Monoterpenes are typical aroma components in muscat grapes and wines, closely related to its geographical origins. However, the mechanism underlying the geographical differences of monoterpenes remains to be elucidated, especially in the Chinese viticulture regions. This study investigated the diversity of six Chinese viticultural vineyards (YT, XF, SS, XX, WW and CL) in the monoterpene composition of Vitis vinifera L. cv.'Muscat Hamburg' grapes and the resulted wines. Monoterpenes were analyzed by HS-SPME- GC-MS. The total amount of free and bound monoterpenes varied dramatically between grapes of different vineyards, and their contents were obviously higher in YT region grapes. The OAVs for 18 monoterpenes of grapes from the YT vineyard were relative higher than those of other regions, and the floral odor could distinguish grapes from different regions. The total free monoterpenes were highest in the YT region wine. Concentrations of total bound monoterpenes ranged from 711.13 µg/L (XF region) to 1078.30 µg/L (CL region). A correlation analysis showed that all monoterpenes showeda positive correlation with mean relative humidity, sum rainfall, and a negative correlation with sum duration of sunshine and mean temperature. This study would provide some new insights to understand the geographical differences of monoterpenes, and the results would facilitate the effective viticultural treatment of grapes to improve the quality of the aroma.


Subject(s)
Vitis , Wine , Gas Chromatography-Mass Spectrometry , Solid Phase Microextraction , Monoterpenes
3.
Front Plant Sci ; 15: 1356257, 2024.
Article in English | MEDLINE | ID: mdl-38463564

ABSTRACT

The gaseous phytohormone ethylene (ETH) plays a key role in plant growth and development, and is a major regulator of phenolic biosynthesis. Light has long been known to influence phytohormone signaling transduction. However, whether light influences the effect of ETH on the phenolic composition of grapes (Vitis vinifera L.) is an open question. Here, the accumulation and composition of anthocyanins and non-anthocyanin phenolics were analyzed in Cabernet Sauvignon grapes under four treatments: light exposure with and without ETH treatment, and box-shading with and without ETH treatment. Both light and ETH promoted ripening, decreased the color index (L*, C*, and h*), and accelerated the color change from green to red and purplish red. Sunlight-exposed grapes had the highest contents of most anthocyanins, flavonols, flavan-3-ols, and hydroxybenzoic acids. In addition, light exposure increased the ratios of 3'5'-substituted/3'-substituted anthocyanins and flavonols, but decreased the ratios of methoxylated/non-methoxylated and acylated/non-acylated anthocyanins and flavan-3-ols. Notably, the effects of ETH were influenced by light exposure. Specifically, ETH treatment promoted anthocyanin and non-anthocyanin biosynthesis in light-exposed grapes, and their increasing multiples were remarkably higher under light-exposed conditions. Furthermore, ETH treatment decreased the ratios of methoxylated/non-methoxylated, 3'5'-substituted/3'-substituted, and acylated/non-acylated anthocyanins and flavan-3-ols in light-exposed grapes, each of which was increased by ETH treatment in shaded grapes. Fifteen differential phenolic components were identified through partial least-squares-discriminant analysis (PLS-DA). Among them, cyanidin-3-O-(cis-6-O-coumaryl)-glucoside, petunidin-3-O-(6-O-acetyl)-glucoside, petunidin-3-O-(trans-6-O-coumaryl)-glucoside, petunidin-3-O-glucoside, myricetin-3-O-galactoside, kaempferol-3-O-galactoside, and kaempferol-3-O-glucoside were the main differential components between ETH treatments under different light conditions. This study contributes to the understanding of the impact of ethylene treatment under dark and light conditions on phenolic synthesis in grape berries.

4.
Bioresour Technol ; 396: 130433, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38342281

ABSTRACT

Cassava (Manihot esculenta Crantz) leaves, the primary by-product of cassava processing, constitute a significant protein source, accounting for 18 to 38 percent on a dry weight basis. Despite their nutritional value, a substantial portion of these leaves is often discarded post-harvest, resulting in notable resource waste. This study employs metagenomic technology to investigate the protein degradation mechanism in cassava leaves, aiming to provide a technical reference for value-added of this by-product. Following a 36-hour period of natural fermentation, the protein degradation rate reached 58%, a phenomenon intricately linked to both the microbial community structure and its functional properties. Notably, Lactococcus and Enterobacter, recognized for their abundant protease activity, were predominant. Metagenomically assembled genomes further revealed Lactococcus's substantial role in producing flavors and active compounds, including amino acids and peptides. This study offers novel perspectives to the foodization and high-value utilization of cassava by-products, emphasizing the sustainable exploitation of biomass resources.


Subject(s)
Manihot , Fermentation , Manihot/chemistry , Manihot/metabolism , Proteolysis , Plant Leaves/chemistry
5.
Food Chem X ; 21: 101232, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38420507

ABSTRACT

Sunlight exposure of grape clusters is frequently reported to influence grape aromas greatly. Among them, the effects of full shading (FS) of clusters on fruit quality and volatile compounds in grape berries has scarcely been investigated. In the present study, the effects of FS from véraison to ripeness on fruit quality and volatile compounds in Cabernet Sauvignon grapes were studied. The results showed that FS treatment reduced fruit size and berry weight, delayed fruit maturity, and decreased the contents of anthocyanins, phenols, and tannins in grape berries. In addition, volatile compounds in grape berries were analyzed, and 55 and 53 volatile compounds were detected in the control (CK) and FS groups, respectively. The results indicated that the concentrations of straight-chain fatty aldehydes, straight-chain fatty alcohols, straight-chain fatty acids, and branched-chain fatty acids, norisoprenoids, and total concentration of volatile compounds were all higher in FS group than in CK group. Specifically, FS treatment had significant promoting effects on the concentrations of ß-damascenone, terpineol, 2-ethyl-1-hexanol, and 2-hexenal, and remarkably decreased the concentrations of geranial, benzeneacetaldehyde, neral, and ethyl acetate. Partial least squares-discriminant analysis (PLS-DA) revealed a clear separation between the control (CK) and FS groups, and showed that 2-hexenal and hexanal were the main characteristic aroma compounds in the FS group. Moreover, an increase in the intensity of fruity, herbaceous, floral, and mushroom aromas was recorded in FS grapes. This study provides new insights into the effects of the exclusion of sunlight exposure on volatile compound accumulation in grape berries.

6.
Hortic Res ; 11(2): uhad293, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38371638

ABSTRACT

Anthocyanins are the primary color components of grapevine berries and wines. In cultivation practices, a moderate water deficit can promote anthocyanin accumulation in red grape skins. Our previous study showed that abscisic acid (ABA) plays a key role in this process. Herein, we identified a microRNA, vv-miR156b, that is generated in grapevine berries in response to drought stress, along with increasing anthocyanin content and biosynthetic structural gene transcripts. In contrast, vv-miR156b short tandem target mimic (STTM) function-loss callus exhibits the opposite phenotype. Results from in vivo and in vitro experiments revealed that the ABA-signaling-regulated transcription factor VvAREB2 binds directly to the ABA-responsive element (ABRE) of the MIR156b promoter and activates miR156b expression. Furthermore, two miR156b downstream targets, VvSBP8 and VvSBP13, exhibited reduced grape anthocyanin content in their overexpressors but there was a contrary result in their CRISPR-edited lines, the decrease in anthocyanin content was rescued in miR156b and SBP8/13 double overexpressors. We further demonstrated that both VvSBP8 and VvSBP13, encoding transcriptional repressors, displayed sufficient ability to interact with VvMYC1 and VvMYBA1, thereby interfering with MYB-bHLH-WD (MBW) repeat transcriptional complex formation, resulting in the repression of anthocyanin biosynthesis. Our findings demonstrate a direct functional relationship between ABA signaling and the miR156-SBP-MBW complex regulatory module in driving drought-induced anthocyanin accumulation in grape berries.

7.
Comput Biol Med ; 169: 107873, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38181606

ABSTRACT

Currently, significant progress has been made in predicting brain age from structural Magnetic Resonance Imaging (sMRI) data using deep learning techniques. However, despite the valuable structural information they contain, the traditional engineering features known as anatomical features have been largely overlooked in this context. To address this issue, we propose an attention-based network design that integrates anatomical and deep convolutional features, leveraging an anatomical feature attention (AFA) module to effectively capture salient anatomical features. In addition, we introduce a fully convolutional network, which simplifies the extraction of deep convolutional features and overcomes the high computational memory requirements associated with deep learning. Our approach outperforms several widely-used models on eight publicly available datasets (n = 2501), with a mean absolute error (MAE) of 2.20 years in predicting brain age. Comparisons with deep learning models lacking the AFA module demonstrate that our fusion model effectively improves overall performance. These findings provide a promising approach for combining anatomical and deep convolutional features from sMRI data to predict brain age, with potential applications in clinical diagnosis and treatment, particularly for populations with age-related cognitive decline or neurological disorders.


Subject(s)
Cognitive Dysfunction , Magnetic Resonance Imaging , Humans , Magnetic Resonance Imaging/methods , Brain
8.
Ageing Res Rev ; 94: 102191, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38199526

ABSTRACT

Aging in humans is associated with abdominal distribution and remodeling of body fat and a parallel gradual increase in the prevalence of metabolic diseases such as obesity, type 2 diabetes mellitus and fatty liver disease, as well as the risk of developing metabolic complications. Current treatments might be improved by understanding the detailed mechanisms underlying the onset of age-related metabolic disorders. Neddylation, a post-translational modification that adds the ubiquitin-like protein NEDD8 to substrate proteins, has recently been linked to age-related metabolic diseases, opening new avenues of investigation and raising a potential target for treatment of these diseases. In this review, we will focus on the potential role of NEDD8-mediated neddylation in age-related metabolic dysregulation, insulin resistance, obesity, type 2 diabetes mellitus and fatty liver. We propose that alterations in NEDD8-mediated neddylation contribute to triggering insulin resistance and the development of age-related metabolic dysregulation, thus highlighting NEDD8 as a promising therapeutic target for preventing age-related metabolic diseases.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin Resistance , Humans , NEDD8 Protein , Ubiquitins/metabolism , Obesity
9.
J Sci Food Agric ; 104(2): 1092-1106, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-37782112

ABSTRACT

BACKGROUND: Flavonoids are vital for the development of high-quality grapes and wine, and manganese deficiency decreases grape berry coloration. However, the effects and underlying mechanisms of action of manganese sulfate on grape metabolic profiles have not been adequately researched. In this study, three concentrations of manganese sulfate solutions, 0.5 µmol·L-1 (low, L), 5 µmol·L-1 (middle, M - the standard manganese concentration of Hoagland nutrient solution, control), and 1000 µmol·L-1 (high, H), were applied to the 'Cabernet Sauvignon' grapevine (Vitis vinifera L.) to explore the effect on berry composition. RESULTS: Manganese application improved manganese concentration effectively in grape organs. Furthermore, the concentrations of malvidin 3-O-(6-O-acetyl)-glucoside, malvidin 3-O-glucoside, malvidin-trans-3-O-(6-O-p-coumaryl)-glucoside, and peonidin 3-O-(6-O-acetyl)-glucoside increased significantly under H treatment. Weighted gene co-expression network analysis (WGCNA) revealed that the structural genes (VvDFR, VvUFGT, and VvOMT) of flavonoid biosynthesis were upregulated under H treatment, and their transcription levels correlated positively with malvidin- and peonidin-derived anthocyanin concentrations. CONCLUSIONS: This study suggested that manganese application regulates berry transcriptional and flavonoid metabolic profiles, providing a theoretical basis for improving the color of red grapes and wines. © 2023 Society of Chemical Industry.


Subject(s)
Vitis , Wine , Vitis/chemistry , Flavonoids/analysis , Transcriptome , Manganese/analysis , Anthocyanins/analysis , Wine/analysis , Metabolome , Glucosides/analysis , Fruit/chemistry
10.
Food Chem X ; 20: 101030, 2023 Dec 30.
Article in English | MEDLINE | ID: mdl-38144762

ABSTRACT

Inheritance and mutations are important factors affecting grape phenolic composition. To investigate the inter- and intra-varietal differences in polyphenolic compounds among grapes and wines, 27 clones belonging to eight varieties of Vitis vinifera L. were studied over two consecutive years. A total of 24 polyphenols (nine anthocyanins, three flavanols, five flavonols, and seven phenolic acids) were analyzed, and the physicochemical parameters of the grapes and wines were determined. Polyphenol profiles showed significant varietal and clonal polymorphisms, and malvidin-3-O-glucoside, peonidin-3-O- glucoside, and epicatechin were identified as key biomarkers distinguishing different grapes and wines when using an orthogonal partial least squares discriminant analysis. Further multivariate analysis classified these genotypes into three subclasses, and a somatic variant of 'Malbec', MBVCR6, had the most abundant polyphenolic compounds that were related to the titratable acid content. The current results reveal that varietal and clonal variations are important for obtaining wines with high polyphenol content.

11.
Foods ; 12(17)2023 Aug 30.
Article in English | MEDLINE | ID: mdl-37685191

ABSTRACT

The metabolic pathway of 3-alkyl-2-methoxypyrazines (MPs) in grape remains largely unclear except for the final step. In this study, the 2,5-dicarbonyl-3-isobutyl-piperazine (DCIP), which is proposed as the key intermediate of 3-isobutyl-2-methoxypyrazine (IBMP) biosynthesis, was incorporated into Cabernet Sauvignon clusters in situ using a soaking method. The IBMP concentration of grape and the expression patterns of VvOMTs in berry skin were monitored over two consecutive years. The results showed that the IBMP concentration of grape treated with DCIP was significantly increased at maturity in both years. The relative expression levels of VvOMT1 and VvOMT3 in berry skin were positively correlated with the IBMP accumulation. After DCIP incorporation, the relative expression level of VvOMT1 and particularly that of VvOMT3 were obviously up-regulated and closely mirrored the IBMP accumulation pattern in two consecutive years. Therefore, we speculate that DCIP may be a key intermediate involved in the biosynthesis of IBMP and plays an important role in regulating IBMP accumulation.

12.
Article in English | MEDLINE | ID: mdl-37740881

ABSTRACT

The gut microbiota is the largest and most complex ecosystem consisting of trillions of microorganisms, which influenced by various external factors. As an important probiotic species, Lactobacillus helps to improve gut microbial diversity and composition, underlying potential efficacy in growth performance and disease prevention. However, limited studies have been investigated the relationship between Lactobacillus sakei and intestinal health in dogs. In this study, dogs in the two groups were fed a standard diet (group C, n = 8) and Lactobacillus sakei diet (group P, n = 8), respectively. The growth performance, serum biochemical indices, antioxidant capacity, gut microbiota, and metabolism of dogs in both groups were studied. Results from growth trials showed that L. sakei can significantly improve the growth performance of dogs, including increased weight gain (p < 0.05), serum biochemical indices, i.e., ALP, TP, and ALB (p < 0.05), and better antioxidant capacity, i.e., SOD and GSH-Px (p < 0.05). Significant changes in the gut microbial composition were detected in dogs fed Lactobacillus sakei, as evidenced by an increase in the level of Firmicutes, Spirochaetota, and Patescibacteria, all of them play an important role in maintaining intestinal health. Moreover, a decrease in the level of microorganisms that threaten health, such as Mucispirillum and Clostridium_sensu_stricto_13. The metabolic analysis showed that the Lactobacillus sakei enhanced metabolic pathways such as vitamin B6 metabolism, glutathione metabolism, retinol metabolism, and fatty acid degradation. Our findings suggested that Lactobacillus sakei supplementation had beneficial effects on the growth performance and health status of dogs by improving gut microbiota balance and promoting metabolism. There are an estimated 200 million dogs in China, and the population is continuing to grow at a rapid pace. It is essential to explore an effective way to promote health in dogs. Intestinal diseases, particularly colitis and diarrhea, are common clinical conditions in dogs and are associated with gut microbiota. Lactobacillus sakei, as an important species of probiotics, the relationship between L. sakei and intestinal health in dogs remains unclear. Our study suggests that L. sakei significantly promotes growth performance and health states involving weight gain, regulation of gut microbiota, and metabolism. Overall, our findings shed light on the potential role of L. sakei as an alternative in promoting health in dogs.

13.
Microbiol Res ; 276: 127484, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37659336

ABSTRACT

Multidrug resistance (MDR) Staphylococcus aureus is frequently isolated from food products, and can cause severe clinical infection. Bacteriophage (phage) therapy is a promising biocontrol agent against MDR S. aureus in food contamination and clinical infections. In this study, the antimicrobial susceptibility of 47 S. aureus isolates from three swine farms, two slaughterhouses, and four markets (Yangzhou, China) were evaluated. The biological characteristics of four lytic S. aureus phages were compared and the lytic activity of phage SapYZU15 against MDR S. aureus was assessed using milk, fresh pork and a mouse model of subcutaneous abscess. The results showed that 28 S. aureus isolates (59.6%, 28/47) exhibited multiple antibiotic resistance to at least three different classes of antibiotics. Compared to SapYZU01, SapYZU02, and SapYZU03, SapYZU15 had a shorter latent period (10 min), larger burst size (322.00 PFU/cell), broader host range, wider temperature stability (-80 to 50 °C), and pH stability. Furthermore, SapYZU15 significantly reduces the counts of S. aureus in milk and pork (5.69 and 1.16 log colony-forming unit/mL, respectively) at 25 °C and controls the growth of S. aureus at 4 °C. Compared to the mice infected with S. aureus MRSA JCSC 4744 and cocktail (S. aureus YZUsa1, YZUsa4, YZUsa12, YZUsa14, and MRSA JCSC 4744), treatment with SapYZU15 led to faster tissue healing, less weight loss, and lower viable S. aureus counts in the murine abscess model. Moreover, prevention with SapYZU15 effectively inhibited abscess formation through a synergistic effect with pro-inflammatory cytokines. Consequently, our results suggest that SapYZU15 is an effective strategy for controlling S. aureus contamination in food products, and possesses an immense potential to treat and prevent clinic infection caused by MDR S. aureus strains. The interactions and mechanisms between SapYZU15 and its bacterial host differed depending on the model, temperature, and multiplicity of infection (MOI).


Subject(s)
Bacteriophages , Staphylococcal Infections , Animals , Mice , Swine , Staphylococcus aureus , Abscess/drug therapy , Host Specificity , Staphylococcal Infections/drug therapy
14.
Food Res Int ; 170: 112972, 2023 08.
Article in English | MEDLINE | ID: mdl-37316012

ABSTRACT

Nutritious, balanced, tasty and easy to eat, fruit is an indispensable health food for consumers. With consumers' increasing respect for the concept of health, green and nutrition, the peel, which has higher nutritional value compared to the pulp, is gradually being emphasized in the consumption process. The suitability of fruit peels for consumption is influenced by various factors, such as the amount of pesticide residues, nutrient content, ease of peeling, and fruit texture, but there is a lack of relevant studies to guide consumers' scientific intake of fruit peels. This review first investigated chineses consumers consumption of common fruits with peels, especially eight fruits that are controversial in terms of whether to consume them with peels, and the results showed that whether people consume peels depends mainly on their nutritional value and pesticide residues. Based on this, the paper discusses the common methods of pesticide detection and removal from fruit peels, as well as the nutrients contained in different fruit peels and their physiological activities, if the peels usually have stronger antioxidant, anti-inflammatory and anti-tumor activities than the pulp. Finally, reasonable dietary recommendations are made on whether fruits should be consumed with their peels, with a view to guiding chineses consumers towards scientific consumption and provide theoretical basis for relevant research in other countries.


Subject(s)
Pesticide Residues , Humans , Health Education , Nutritional Status , China , Risk Assessment
15.
Food Chem X ; 18: 100676, 2023 Jun 30.
Article in English | MEDLINE | ID: mdl-37122554

ABSTRACT

Green leaf volatiles (GLVs), play important roles in the green and fresh aroma characteristics of grape berries. The evolution of GLV profiles regarding the varietal difference during grapevine phenological ripening is not well understood. This study generated the GLV profiles of five Vitis vinifera L. cultivars ('Cabernet Sauvignon,' 'Cabernet Franc,' 'Cabernet Gernischt,' 'Chardonnay,' and 'Sauvignon Blanc') at five ripening stages. GLVs were distinctive at different E-L stages for each grape variety. (E)-2-hexen-1-ol, 1-hexanol, and hexanal were the dominant components in all mature berries. In terms of total GLV content, all varieties reached the maximum at maturity in the 2019 vintage, and the total GLV content was higher in mature Sauvignon Blanc and Cabernet Sauvignon grapes. In the 2020 vintage, the total GLV content in Chardonnay and Sauvignon Blanc berries rapidly accumulated at veraison and peaked before harvest. The present results could help winemakers create a good balance of wine aroma.

16.
BMC Endocr Disord ; 23(1): 93, 2023 Apr 26.
Article in English | MEDLINE | ID: mdl-37101180

ABSTRACT

OBJECTIVE: Triglyceride/high-density lipoprotein cholesterol (TG/HDL-C) ratio is correlated with metabolic diseases. The prevalence of sarcopenia is significantly higher in type 2 diabetes mellitus (T2DM) patients compared with healthy controls. The purpose of our study is to evaluate the correlation of TG/HDL-C ratio with muscle mass in T2DM patients. METHOD: Our study consists of 1048 T2DM inpatients recruited from the department of endocrinology. Skeletal muscle index (SMI) was detected with a dual energy X-ray absorptiometry method. Low muscle mass was diagnosed using the criteria of SMI less than 7.0 kg/m2 (in male subjects) or 5.4 kg/m2 (in female subjects). RESULT: The prevalence of low muscle mass was 20.9% and 14.5% in male and female groups respectively. SMI was correlated with TG/HDL ratio after adjustment for age, duration of diabetes, diastolic blood pressure (DBP), and HbA1c in male subgroup. In female subgroup, SMI was associated with TG/HDL ratio after adjustment for age and DBP. CONCLUSION: Higher TG/HDL-C ratio is correlated with muscle mass in T2DM patients.


Subject(s)
Diabetes Mellitus, Type 2 , Humans , Male , Female , Diabetes Mellitus, Type 2/epidemiology , Triglycerides , Cholesterol, HDL , Blood Pressure , Muscle, Skeletal/diagnostic imaging
17.
J Med Internet Res ; 25: e45777, 2023 04 04.
Article in English | MEDLINE | ID: mdl-37014691

ABSTRACT

BACKGROUND: Anxiety disorder has become a major clinical and public health problem, causing a significant economic burden worldwide. Public attitudes toward anxiety can impact the psychological state, help-seeking behavior, and social activities of people with anxiety disorder. OBJECTIVE: The purpose of this study was to explore public attitudes toward anxiety disorders and the changing trends of these attitudes by analyzing the posts related to anxiety disorders on Sina Weibo, a Chinese social media platform that has about 582 million users, as well as the psycholinguistic and topical features in the text content of the posts. METHODS: From April 2018 to March 2022, 325,807 Sina Weibo posts with the keyword "anxiety disorder" were collected and analyzed. First, we analyzed the changing trends in the number and total length of posts every month. Second, a Chinese Linguistic Psychological Text Analysis System (TextMind) was used to analyze the changing trends in the language features of the posts, in which 20 linguistic features were selected and presented. Third, a topic model (biterm topic model) was used for semantic content analysis to identify specific themes in Weibo users' attitudes toward anxiety. RESULTS: The changing trends in the number and the total length of posts indicated that anxiety-related posts significantly increased from April 2018 to March 2022 (R2=0.6512; P<.001 to R2=0.8133; P<.001, respectively) and were greatly impacted by the beginning of a new semester (spring/fall). The analysis of linguistic features showed that the frequency of the cognitive process (R2=0.1782; P=.003), perceptual process (R2=0.1435; P=.008), biological process (R2=0.3225; P<.001), and assent words (R2=0.4412; P<.001) increased significantly over time, while the frequency of the social process words (R2=0.2889; P<.001) decreased significantly, and public anxiety was greatly impacted by the COVID-19 pandemic. Feature correlation analysis showed that the frequencies of words related to work and family are almost negatively correlated with those of other psychological words. Semantic content analysis identified 5 common topical areas: discrimination and stigma, symptoms and physical health, treatment and support, work and social, and family and life. Our results showed that the occurrence probability of the topical area "discrimination and stigma" reached the highest value and averagely accounted for 26.66% in the 4-year period. The occurrence probability of the topical area "family and life" (R2=0.1888; P=.09) decreased over time, while that of the other 4 topical areas increased. CONCLUSIONS: The findings of our study indicate that public discrimination and stigma against anxiety disorder remain high, particularly in the aspects of self-denial and negative emotions. People with anxiety disorders should receive more social support to reduce the impact of discrimination and stigma.


Subject(s)
COVID-19 , Social Media , Humans , COVID-19/epidemiology , Pandemics , Linguistics , Anxiety , Attitude , China/epidemiology
18.
Microbiol Res ; 271: 127369, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36996644

ABSTRACT

The study of bacteriophages is experiencing a resurgence with the increasing development of antimicrobial resistance in Staphylococcus aureus. Nonetheless, the genetic features of highly efficient lytic S. aureus phage remain to be explored. In this study, two lytic S. aureus phages, SapYZU11 and SapYZU15, were isolated from sewage samples from Yangzhou, China. The phage morphology, one-step growth, host spectrum and lytic activity of these phages were examined, and their whole-genome sequences were analysed and compared with 280 published genomes of staphylococcal phages. The structural organisation and genetic contents of SapYZU11 and SapYZU15 were investigated. The Podoviridae phage SapYZU11 and Herelleviridae phage SapYZU15 effectively lysed all of the 53 S. aureus strains isolated from various sources. However, SapYZU15 exhibited a shorter latent period, larger burst size and stronger bactericidal ability with an anti-bacterial rate of approximately 99.9999% for 24 h. Phylogenetic analysis revealed that Herelleviridae phages formed the most ancestral clades and the S. aureus Podoviridae phages were clustered in the staphylococcal Siphoviridae phage clade. Moreover, phages in different morphology families contain distinct types of genes associated with host cell lysis, DNA packaging and lysogeny. Notably, SapYZU15 harboured 13 DNA metabolism-related genes, 5 lysin genes, 1 holin gene and 1 DNA packaging gene. The data suggest that S. aureus Podoviridae and Siphoviridae phages originated from staphylococcal Herelleviridae phages, and the module exchange of S. aureus phages occurred in the same morphology family. Moreover, the extraordinary lytic capacity of SapYZU15 was likely due to the presence of specific genes associated with DNA replication, DNA packaging and the lytic cycle.


Subject(s)
Bacteriophages , Siphoviridae , Staphylococcal Infections , Humans , Staphylococcus aureus/genetics , Sewage , Phylogeny , Staphylococcal Infections/microbiology , Staphylococcus Phages/genetics
19.
Front Microbiol ; 14: 1088125, 2023.
Article in English | MEDLINE | ID: mdl-36970693

ABSTRACT

Prophages as a part of Staphylococcus aureus genome contribute to the genetic diversity as well as survival strategies of their host. Some S. aureus prophages also have an imminent risk of host cell lysis and become a lytic phage. Nonetheless, interactions among S. aureus prophages, lytic phages, and their hosts, as well as the genetic diversity of S. aureus prophages, remain unclear. We identified 579 intact and 1,389 incomplete prophages in the genomes of 493 S. aureus isolates obtained from the NCBI database. The structural diversity and gene content of intact and incomplete prophages were investigated and compared with 188 lytic phages. Mosaic structure comparison, ortholog group clustering, phylogenetic analysis, and recombination network analysis were performed to estimate genetic relatedness among S. aureus intact prophages, incomplete prophages, and lytic phages. The intact and incomplete prophages harbored 148 and 522 distinct mosaic structures, respectively. The major difference between lytic phages and prophages was the lack of functional modules and genes. Compared to the lytic phages, both the S. aureus intact and incomplete prophages harbored multiple antimicrobial resistance (AMR) and virulence factor (VF) genes. Several functional modules of lytic phages 3_AJ_2017 and 23MRA shared more than 99% nucleotide sequence identity with S. aureus intact (ST20130943_p1 and UTSW_ MRSA_55_ip3) and incomplete prophages (SA3_LAU_ip3 and MRSA_FKTN_ip4); other modules showed little nucleotide sequence similarity. Ortholog and phylogenetic analyses revealed a common gene pool shared between the prophages and lytic Siphoviridae phages. Moreover, most shared sequences existed within intact (43428/137294, 31.6%) and incomplete prophages (41248/137294, 30.0%). Therefore, the maintenance or loss of functional modules in intact and incomplete prophages is key to balance the costs and benefits of large prophages harboring various AMR and VF genes in the bacterial host. The shared identical functional modules between S. aureus lytic phages and prophages are likely to result in the exchange, acquisition, and loss of functional modules, and therefore contribute to their genetic diversity. Moreover, constant recombination events within prophages globally were responsible for the coevolution of lytic phages and their bacterial hosts.

20.
J Sci Food Agric ; 103(10): 4838-4849, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-36916448

ABSTRACT

BACKGROUND: In current vineyards, potassium dihydrogen phosphate (KH2 PO4 ) is a common foliar fertilizer with the lowest salt index. It is employed to improve the transportation and distribution of grape photosynthetic products, but the mechanism of its effect on fruit flavonoid synthesis is unclear. RESULTS: This study investigated the effects of foliar spraying of KH2 PO4 at different developmental stages (1 week before veraison; the end of veraison (EV)) on flavonoid metabolites and related gene expression of 'Cabernet Sauvignon' grape for two consecutive vintages. High-performance liquid chromatography coupled with electrospray ionization tandem mass spectrometry technology was used to identify 6 flavan-3-ols, 11 flavonols, and 16 anthocyanins. KH2 PO4 influenced anthocyanins content, especially when applied at the EV stage, the content of anthocyanins was significantly higher than that of the control. Further, quantitative polymerase chain reaction analysis showed that KH2 PO4 treatment applied at the EV stage can increase the expression of anthocyanin synthesis genes and accelerate anthocyanin synthesis. In particular, the expression of VviGST in EV treatment was significantly higher than that of the control during the development process. CONCLUSION: These findings have enhanced our understanding of the effect of KH2 PO4 treatment on grape flavonoids. Among them, EV treatment can significantly increase anthocyanins content. © 2023 Society of Chemical Industry.


Subject(s)
Flavonoids , Vitis , Flavonoids/analysis , Vitis/chemistry , Anthocyanins/analysis , Phosphates/analysis , Fruit/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...